Epac1 increases migration of endothelial cells and melanoma cells via FGF2-mediated paracrine signaling
نویسندگان
چکیده
Fibroblast growth factor (FGF2) regulates endothelial and melanoma cell migration. The binding of FGF2 to its receptor requires N-sulfated heparan sulfate (HS) glycosamine. We have previously reported that Epac1, an exchange protein activated by cAMP, increases N-sulfation of HS in melanoma. Therefore, we examined whether Epac1 regulates FGF2-mediated cell-cell communication. Conditioned medium (CM) of melanoma cells with abundant expression of Epac1 increased migration of human umbilical endothelial cells (HUVEC) and melanoma cells with poor expression of Epac1. CM-induced increase in migration was inhibited by antagonizing FGF2, by the removal of HS and by the knockdown of Epac1. In addition, knockdown of Epac1 suppressed the binding of FGF2 to FGF receptor in HUVEC, and in vivo angiogenesis in melanoma. Furthermore, knockdown of Epac1 reduced N-sulfation of HS chains attached to perlecan, a major secreted type of HS proteoglycan that mediates the binding of FGF2 to FGF receptor. These data suggested that Epac1 in melanoma cells regulates melanoma progression via the HS-FGF2-mediated cell-cell communication.
منابع مشابه
Epac1 promotes melanoma metastasis via modification of heparan sulfate.
Our previous report suggested the potential role of the exchange protein directly activated by cyclic AMP (Epac) in melanoma metastasis via heparan sulfate (HS)-mediated cell migration. In order to obtain conclusive evidence that Epac1 plays a critical role in modification of HS and melanoma metastasis, we extensively investigated expression and function of Epac1 in human melanoma samples and c...
متن کاملChronic Exposure of Human Endothelial Progenitor Cells to Diabetic Condition Abolished the Regulated Kinetics Activity of Exosomes
By virtue of lifestyle change, incidence of type 2 diabetes is increasingly being raised with different up-surging pathologies. This condition found to disqualify endothelial progenitor cells during neo-vascularization. Besides to an aborted differentiation property, malfunctioned paracrine activities exacerbate vascular abnormalities. It is found nano-scaled exosomes play essential roles on re...
متن کاملEndothelial MMP14 is required for endothelial-dependent growth support of human airway basal cells.
Human airway basal cells are the stem (or progenitor) population of the airway epithelium, and play a central role in anchoring the epithelium to the basement membrane. The anatomic position of basal cells allows for potential paracrine signaling between them and the underlying non-epithelial stromal cells. In support of this, we have previously demonstrated that endothelial cells support growt...
متن کاملChronic Exposure of Human Endothelial Progenitor Cells to Diabetic Condition Abolished the Regulated Kinetics Activity of Exosomes
By virtue of lifestyle change, incidence of type 2 diabetes is increasingly being raised with different up-surging pathologies. This condition found to disqualify endothelial progenitor cells during neo-vascularization. Besides to an aborted differentiation property, malfunctioned paracrine activities exacerbate vascular abnormalities. It is found nano-scaled exosomes play essential roles on re...
متن کاملThe interplay between hypoxia, endothelial and melanoma cells regulates vascularization and cell motility through endothelin-1 and vascular endothelial growth factor.
Reciprocal growth factor exchanges between endothelial and malignant cells within the hypoxic microenvironment determine tumor progression. However, the nature of these exchanges has not yet been fully explored. We studied the mutual regulation between endothelial cells (EC), melanoma cells and hypoxia that dictate tumor aggressiveness and angiogenic activity. Here, we investigated the presence...
متن کامل